Wetting transition in polyolefin blends studied by profiling techniques

Jakub Rysz^a, Andrzej Budkowski^a*, Frank Scheffold^b, Jacob Klein^b, Lewis J. Fetters^c, Andrzej Bernasik^a and Kazimierz Kowalski^a

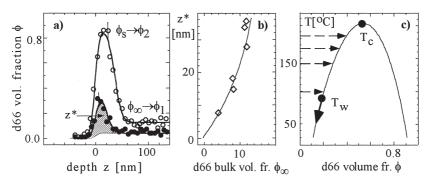
^aSmoluchowski Institute of Physics, Jagellonian University, Reymonta 4 and J.C.C.A.S.R., University of Mining and Metallurgy, 30-059 Krakow, Poland

SUMMARY: Based on segregation data, determined with profiling techniques, we analyze surface phase diagram of binary liquid mixtures composed of random olefinic copolymers. Blends with extended- and small- critical point wetting regimes are discussed. First observation of wetting transition is presented. Surface enrichment-depletion duality, a phenomenon prerequisite to the 2nd order wetting transition, is described.

Introduction

Wetting phenomena were classified primarily in terms of the contact angle Θ , determining the geometrical arrangement of two coexisting phases ϕ_1 and ϕ_2 at the surface. An alternative approach is provided by the picture of surface segregation described by the profile $\phi(z)$ of blend composition ϕ vs. distance z from the surface²⁻³: a surface composition $\phi_s < \phi_2$ decaying smoothly to its bulk value ϕ_1 characterizes partial wetting. In the case of complete wetting a macroscopically thick layer (i.e. with thickness larger than correlation lengths in the mixture) of the second phase ϕ_2 resides at the surface and excludes the bulk phase ϕ_1 from the surface (segregation changes into separation). Profiling techniques⁴⁻⁵⁾, determining the profiles $\phi(z)$, can be used to study wetting phenomena: Complete wetting has been observed for various binary polymer blends⁶⁻⁸⁾. The most extensive study (and the only one free of spinodal demixing effects) concerns the model mixtures composed of random, nearly monodisperse $(M_w/M_n < 1.08)$, olefinic copolymers^{7,9-15)} of the structure $(E_{1-x}EE_x)_N$ (N is the degree of polymerization). Here E and EE are the linear ethylene (C₄H₈) and branched ethyl-ethylene $(C_2H_3(C_2H_5))$ groups, respectively, distributed randomly in the ratio (1-x):x on the chains. The components in each binary mixture have different values x_1 , x_2 of the EE fraction. While one blend component (hx₂) is hydrogenous, the other (dx₁) is deuterated to provide contrast, necessary for the ion beam methods of non-resonant ³He Nuclear Reaction Analysis (NRA)⁴⁾

^bDepartment of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel


^cExxon Research and Engineering Company, Annandale, N.J. 08801, USA

and dynamic Secondary Ion Mass Spectroscopy (SIMS)⁵⁾. Information about the profiles $\phi(z)$, with a depth resolution in the range of 7-20 nm, is provided by the energy spectrum of the nuclear reaction products (NRA) or by the intensity of the secondary ions (sputtered by low-energy (3-7 keV) primary ions) recorded in a function of the sputtering time (SIMS). Blend samples are stored at a temperature below the glass transition¹⁴⁾ (-70°C \leq T_g \leq -39°C) until required for the experiments. Bulk and surface characteristics of all blends dx₁/hx₂ discussed here were determined previously with the profiling techniques⁹⁻¹⁵⁾: Binodals (represented in Fig.1-3), yielded by the bilayers of coexisting phases monitored at various temperatures, were interpreted in terms of the bulk interaction parameter $\chi^{10,12,15)}$. Obtained χ values are in accord (see Ref.10) with small-angle neutron scattering data. Surface energy differences $\Delta \gamma$ between pure blend components (Fig.4) were evaluated^{10,15)} by the mean field Cahn analysis²⁾ of surface segregation data. The essential observable of these data is the surface excess z^* of the

deuterated (dx₁) component (shaded in Figs.1-2): $z^* = \int_0^{z(\phi_\infty)} [\phi(z) - \phi_\infty] dz$. Here $z(\phi_\infty)$ is the distance from the surface (z=0) to the plateau (ϕ_∞) in the profile $\phi(z)$.

Critical Point Wetting

In 1977 Cahn proposed²⁾ that complete wetting characterizes temperatures close enough to the critical point T_C of the mixture, and the transition to partial wetting occurs for larger $|T_C-T|$ values. The original Cahn argument applies to polymer blends, which also are likely candidates^{3,7,9,10)} to exhibit complete wetting even very far below T_C . Extended critical point wetting region has been concluded for the binary pair d66 (N=2030)/h52(N=1510) based on

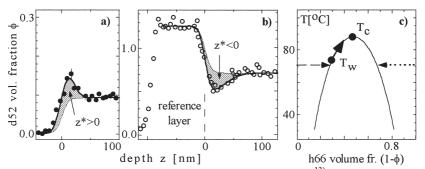


Fig.1: (a) Surface enriched profiles $\phi(z)$ of the d66/h52 blend⁹⁾ following 2h of annealing at 99°C and (b) the corresponding surface excess z^* isotherm. The isotherms were determined for composition ranges marked as dashed arrows on the phase diagram (c). Wetting transition temperature T_W is located below 99°C.

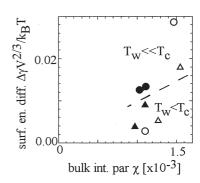
the analysis of surface segregation data⁹⁾ (Fig.1). A divergence of the surface excess z^* was observed as the binodal of the mixture was approached from the one-phase region, even at a temperature 105 deg below T_C (Fig.1.b), and interpreted as the advent of complete wetting behavior⁷⁾. This also is revealed by the shape of the surface enriched profiles (Fig.1.a)): the surface concentration ϕ_S of the enriched layer attains (at z=0) the upper coexistence composition ϕ_2 , as bulk volume fraction ϕ_∞ approaches (at z > 100 nm) the lower coexistence value ϕ_1 . A large difference between critical and wetting points (T_C - T_W >75 deg) was also concluded⁹⁾ for the blend d86(N=1520)/h75(N=1625).

Surface Enrichment-Depletion Duality

According to a common viewpoint the free surface of a binary mixture A/B is enriched in one component, say A, regardless of the value of bulk composition ϕ_{∞} . From recent theoretical analyses¹⁶⁾ and Monte Carlo simulations¹⁷⁾ one expects however that some mixtures can exhibit surface enrichment in the component A, when the bulk volume fraction ϕ_{∞} is below certain value Q, and a depletion in A for $\phi_{\infty} > Q$. The duality phenomenon plays an important role in the reduction of the miscibility gap expected for polymer blends confined in thin films between symmetric walls¹⁷⁾. It also is a prerequisite¹⁶⁾ for the 2nd order wetting transition (critical wetting). The first experimental study of the duality, reported¹³⁾ for the olefinic mixture h66(N=2030)/d52(N=1510) annealed at T=71°C, is depicted in Fig.2. The enrichment in d52 is observed for $\phi_{\infty} \le \phi_1$, while the depletion in the d52 component is detected for $\phi_{\infty} \ge \phi_2$

Fig.2: Composition-depth profiles $\phi(z)$ of the h66/d52 blend¹³⁾ indicating: an enrichment $(z^*>0)$ (a) and a depletion $(z^*<0)$ (b) in the d52 component, obtained for samples annealed to equilibrium at 71°C. The surface (z=0) position is yielded by: the profile itself (a); an interface created by a reference layer positioned on top of the annealed sample (b). Positive and negative surface excess z^* values were obtained for composition ranges marked by dotted and dashed arrow on phase diagram (c). The wetting point T_W is located above 71°C.

 $(\phi_1 < Q < \phi_2)$. This suggests^{13,16)} that wetting point T_W is located above 71°C, i.e. close to the critical point of the blend $T_C = 88$ °C. Both, the reduced critical point wetting regime (T_C - T_W <17 deg) and the duality effect itself^{10,13,16)}, point on a very small $\Delta \gamma$ value.


Wetting Transition

In spite of intensive research⁶⁻⁸⁾ the observations of wetting transition in polymer blends are still very scarce. Only a *reversal* wetting transition has been reported^{8b)} so far for the mixture of poly(ethylene-propylene) and its deuterated counterpart: while complete wetting at low-and partial wetting at higher- temperatures was observed in the experiment^{8b)}, it is not clear if complete wetting behavior could be attained again at temperatures close enough to T_C. The first experimental observation of *standard* wetting transition, determined¹¹⁾ for the olefinic blend d75(N=1625)/h66(N=2030), is represented in Fig.3. Surface layers growing from the bulk phase φ₁ were studied as a function of the annealing time. The bulk composition φ₁ was not altered during annealing as an additional layer, rich in the d75 component (located at z > 200-300 nm and for the sake of clearness not shown in Fig.3.a)), acted as a material reservoir⁷⁾. The profiles φ(z) characteristic of complete wetting were observed at T=79°C (marked as O in Fig.3.a)). Monotonous growth of the surface layer is halted when temperature is changed to T=59°C. For instance the profile φ(z) marked as • in Fig.3.a) is identical to that measured for much shorter annealing times. This is a sign of a partial wetting regime. A reduced critical point wetting region (37°>T_C-T_W>22°) is indicated.

Fig.3: (a) Surface layers ¹¹⁾ of the blend d75/h66 growing from the bulk phase ϕ_1 . The profiles ¹¹⁾: • and O correspond to samples annealed at 59 and 79°C for 73.2 and 3.4 days, respectively. The second annealing time is equivalent ¹⁴⁾ to 18.8 days at 59°C. No change in the shape of the profile • is observed ¹¹⁾ already after 12.6 days of annealing. (b) The phase diagram with marked regions corresponding to determined segregation isotherms (dashed arrows) and to studied dynamics (see (a)) of the enrichment from coexistence phase (X). The wetting point: $64^{\circ}\text{C} < T_W < 79^{\circ}\text{C}$.

Fig.4: Surface energy difference $\Delta \gamma V^{2/3}/k_B T$ plotted as a function of bulk interaction parameter χ for blend pairs: O - (d66/h52, h66/d52), Δ - (d86/h75,h86/d75), Δ - (d75/h66, h75/d66), Φ-(d52/h38,h52/d38) at $T = 100^{\circ}C^{10}$ (V-is the segmental volume). For each blend pair a point with higher both χ and $\Delta \gamma V^{2/3}/k_B T$ values corresponds to the mixture, where the component with higher EE fraction x is deuterated.

Conclusions

A wetting transition¹¹⁾ and enrichment-depletion duality¹³⁾, suggesting critical wetting, was observed at the free surface of polyolefine mixtures with a small critical point wetting regime. For such mixtures their components are characterised^{10,15)} (Fig.4) by a *small* difference $\Delta \gamma$ and a *substantial* disparity in cohesive energy, manifested by non-zero χ values. This suggests destructive superposition of enthalpic and entropic forces driving the segregation¹⁵⁾. A considerable change in $\Delta \gamma$ and in the extent of critical point wetting (T_C-T_W) is often caused (Fig.4) by the swap of the blend component labeled by deuterium¹⁵⁾, e.g. for blends d66/h52 and h66/d52 (compare Figs.1 and 2).

References

- 1. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805)
- 2. J. W. Cahn, J. Chem. Phys. 66, 3667 (1977); ibid. 28, 258 (1958)
- 3. K. Binder, Acta Polymer. 46, 204 (1995); Adv. Polymer Sci. 138, 1 (1999)
- 4. T. Kerle, F. Scheffold, J. Klein et al., Acta Polymer. 48, 548 (1997)
- 5. A. Bernasik et al., in: ECASIA'97, I. Olefjord, J.Wiley, Chicester 1997, p.775
- 6. R. Brenn et al., Phys. Rev. Lett. 69, 624 (1992), Europhys. Lett. 29, 353 (1995)
- U. Steiner et al., Science 258, 1126 (1992); Ber. Bunsenges. Phys. Chem. 98, 366 (1994), Phys. Rev. Lett. 77, 2526 (1996), MRS Symp. Proc. 464, 121 (1997)
- a) G. Krausch, E. J. Kramer et al., Macromolecules 26, 5566 (1993); b) J. Genzer,
 E.J. Kramer, Phys. Rev. Lett. 78, 4946 (1997), Europhys. Lett. 44, 180 (1998)
- 9. A. Budkowski, F. Scheffold, J. Klein, L. J. Fetters, J. Chem. Phys. 106, 719 (1997)
- 10. A. Budkowski, *Adv. Polymer Sci.* **148**, 1 (1999)
- 11. J. Rysz, A. Budkowski, A. Bernasik, J. Klein et al., to be submitted (1999)
- 12. F. Scheffold, E. Eiser, A. Budkowski et al., J. Chem. Phys. 104, 8786 (1996)
- 13. A. Budkowski et al., Europhys. Lett. 43, 404 (1998), Vacuum 54, 273 (1999)
- 14. A. Losch, J. Klein et al., J. Polym. Sci., Polym. Phys. Ed. 33, 1821 (1995)
- 15. A. Budkowski, J. Rysz et al., J. Polym. Sci., Polym. Phys. Ed. 36, 2691 (1998)
- 16. R. A. Jerry et al., *Phys. Lett. A* **167**, 198 (1992), *J. Coll. Interf. Sci.* **167**, 287 (1994)
- 17. S. K. Kumar et al., Mol. Phys. 81, 867(1994), Y.Roualt et al., Polymer 37, 297 (1996)